

DX Integration with
HCL Volt MX for Developers

Edition: March 2024

Herbert Hilhorst – herbert.hilhorst@hcl-software.com

Dai Nguyen – dai.nguyen@hcl-software.com

Mario D’Anna – mario.danna@hcl-software.com

 2 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Table of Contents

Author(s) .. 3

Introduction ... 4

Prerequisites .. 5

Lab Overview ... 6

Part 1: Use DX Digital Assets in a new HCL Volt MX Mobile Application ... 9

Part 2: Use DX Content in a new HCL Volt MX Web Application ... 33

Part 3: Use Volt MX Foundry to Integrate External Data Sources in DX .. 63

Part 4: Integrate Volt MX Foundry Web Applications in DX .. 64

Part 5: Use Volt MX Iris to turn a DX Site into a Native Mobile Application .. 67

Conclusion ... 73

Resources .. 74

Legal statements ... 75

Disclaimers ... 76

 3 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Author(s)

This document was created by the following Subject Matter Experts:

Herbert Hilhorst

Company:
HCLSoftware

Bio

Herbert Hilhorst is an HCL Digital Experience (DX) Technical Advisor at
HCLSoftware.

Contact: herbert.hilhorst@hcl-software.com

Dai Nguyen
Company:

HCLSoftware

Bio

Dai Nguyen is an HCL Volt MX Technical Advisor at HCLSoftware.

Contact: dai.nguyen@hcl-software.com

Mario D’Anna

Company:
HCL Software

Bio

Mario Danna is an HCL Volt MX Senior Manager at HCLSoftware.

Contact: mario.danna@hcl-software.com

 4 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Introduction

HCL Volt MX Foundry is a back-end service provider that helps developers build omni-channel digital
applications. Volt MX Foundry allows you to define the back-end to build native mobile apps for iOS,
Android, and Windows and SPAs and Responsive web apps for browsers. Volt MX Foundry ensures
that developers build mobile applications quickly and obtain secured back-end services instantly.
Volt MX Foundry has multiple features, such as - Identity, Integration, Objects, Orchestration, and
Engagement Services. These features can be accessed through a common, centralized Volt MX
Foundry Console.

Many applications require imagery, videos, and content to bring them to life and create an engaging
user experience. Such content and assets often come from a central content & asset management
system, which is used by multiple mobile and non-mobile applications, to ensure consistent
communication and branding across all customer interactions. This also allows business users to
update the content & assets without needing to republish the application. HCL Digital Experience
(DX) provides content and asset services, as well as services to personalize them, accessible via a set
of GraphQL and REST APIs via HCL Volt MX Foundry.

Example: include news, help guides, tutorials, or other corporate content in your application;
retrieve imagery or support videos from the asset management service for consistent branding &
quick update.

This hands-on lab gets you started on the HCL Digital Experience (DX) platform and its integration
with HCL Volt MX. You will learn how to manage digital assets and content centrally and use it in HCL
Volt MX to manage your applications.

You will also learn how to use Foundry to integrate external data sources and Volt MX Web
applications into DX. And you will learn how you may HCL Volt MX Iris to turn your existing DX sites
into native mobile applications.

In this DX developer lab, you play the role of Gene, a developer for the fictitious Woodburn Studio
company.

Gene Hayes, Developer, based in Chicago (USA)

As Gene, you will learn how to manage the REST APIs for DX assets in Foundry and build a mobile
application using Iris. Then you learn how to manage the REST API for DX content in Foundry and
build a web application with Iris. You learn how to use Foundry to integrate external data sources
into DX and how to integrate Volt MX web applications into DX. And you will create a native mobile
application of the Woodburn Stores DX site.

 5 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Prerequisites
1. Completion of the HDX-INTRO course as this gives you access to your own DX Solution

Modules instance on HCL SoFy
2. Completion of Digital Assets and Web Content lessons of HDX-BU-100, as this gives you

some assets and content to are used in this lab
3. Completion of Experience API of HDX-DEV-100 as this helps you setting up the security to

use the REST APIs and gets you started using them
4. Completion of Introduction of HDX-INT-DEV as this helps you understanding how to access

the assets and content externally easily
5. A HCL Volt MX trial or live environment to develop HCL Volt MX applications that integrate

your DX assets and content and Volt MX application installed on your favorite device(s). You
may use HCL Volt MX Go on HCL SoFy (https://hclsofy.com/catalog/hcl-voltmxgo) or the Volt
MX Hackathon Environment Setup guide to create your trial environment:
https://drive.google.com/file/d/17kP86SH7NCQarMXwtiag5OMitSrmG_hR/view

You will be using the following user IDs and passwords:

Purpose User Password
SoFy Login Your official email id Your password
SoFy Solution Console Login sol-admin <from solution console>
DX Developer Login ghayes HCL-Dem0

 6 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Lab Overview
In this lab, you will explore the integration of HCL Digital Experience assets and content in HCL Volt
MX.

There are several parts in this lab, shortly introduced now.

Part 1: Use DX Assets in a new HCL Volt MX Mobile Application

In this part, you will develop, build, and run your Volt MX mobile application that uses your HCL
Digital Experience assets. You will build a Volt Foundry Integration service to get the right details on
an asset.

And a Volt Iris project to access DX assets. This is how your mobile application will look like, using the
collection, asset and rendition IDs.

 7 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Part 2: Use DX Content in a new HCL Volt MX Web Application

In this part, you will learn how to develop, build, and run a new Volt MX web application that uses
your HCL Digital Experience content. To facilitate communication between the DX backend content
and Foundry, you will create integration services in Foundry that will search DX content, based on a
Content Template ID and Parent ID (Site Area) as input to the service, and a service to get details on
a single content. Then you will build your web application with Iris that uses these services. It allows
you to select a ContentTemplateID and ParentID and show the titles and IDs of the content that
correspond.

And when selecting a product, you will see the details.

 8 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Part 3: Use Volt MX Foundry to Integrate External Data Sources in DX

In this part, you will learn how use Digital Data Connector to integrate data sources from HCL Volt
MX Foundry into HCL Digital Experience.

Part 4: Integrate Volt MX Foundry Web Application in DX

And you learn how to integrate Foundry web applications into HCL Digital Experience.

Part 5: Use Volt MX Iris to turn a DX Site into a Native Mobile Application

And you learn how you may use Volt MX Iris to build a native mobile application from any DX site
and deploy this to any store, like Apple AppStore and Google Play.

 9 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Part 1: Use DX Digital Assets in a new HCL Volt MX Mobile
Application

In this part, you will develop, build, and run your Volt MX mobile application that uses your HCL
Digital Experience assets. You will build a Volt Foundry Integration service to get the right details on
an asset and a Volt Iris project to access DX assets.

As you have configured the DX DAM to provide anonymous access, you can easily integrate them in
Volt MX. You can directly use the DAM asset URL in your application. In this part you will build a Volt
Foundry Integration service and a Volt Iris project to access DX assets using the REST API. It fetches a
DX DAM asset, based on three input parameters. In the DX Integration Introduction, you learned
how to access the asset with this REST API (see https://opensource.hcltechsw.com/experience-api-
documentation/dam-api/#operation/RenditionController.getRenditionById):
API URL:

<host>/dx/api/dam/v1/collections/<collection_id>/items/<content_id>/renditions/<rendition_id>

The first parameter is the “DAM Collection ID”, and the second is the “DAM Asset ID”. The third
parameter “DAM Rendition ID” may be determined automatically depending on the device that is
using the application. The output parameters, that your Volt Iris app will display, are the DAM
binaryUrl and the DX Host. Your application will generate a valid URL to the DAM image.

Ensure you have the console URL (for example, https://manage.demo-hclvoltmx.com/) to your
cloud-Foundry and the required Volt MX credentials (email and password) to login to the Foundry.

If you are working with Volt Iris, in any of the steps below, ensure you save your updates regularly,
at least once per step, using the menu Project – Save All or pressing CTRL S.

1. You first need to create a Foundry application that contains the service to access the DAM to
invoke that you will link to in your Iris application. While you could use the REST APIs
directly, here you will use the Foundry API Application Management capability to create
more consumable APIs to access resources in DX. Expand the left-hand-navigation-bar of
Foundry and click Apps to start creating a new or viewing an existing application.

 10 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

2. Then click Add New to create your Foundry application.

3. And update the application name with a good name, e.g.
DXAssetsContentIntegrationSample. Note that the Foundry application name does need not
be the same as your Iris web and/or mobile application.

4. Then add the integration services to access the assets in DX that will contain your new REST
API calls. They are based on JSON. Under the Configure Services tab, click on Integration and
then Configure New.

 11 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

5. Name your new Integration Service, such as DXAssetsService. Note that service names need
to be unique to a Foundry instance. You cannot have another service in your Foundry with
the same name, even in another application. Select JSON as Service Type.
Now you will configure this Integration service to be perform the GET DAM REST API call
with your SoFy instance, which has this format (see
https://opensource.hcltechsw.com/experience-api-documentation/dam-
api/#operation/RenditionController.getRenditionById):

<host>/dx/api/dam/v1/collections/<collection_id>
/items/<asset_id>/renditions/<rendition_id>

First set the Base URL to https://<host>/dx/api/dam/v1/collections from this DAM REST
API URL (e.g. https://dx.sbx0000.play.hclsofy.com/dx/api/dam/v1/collections with your
SoFy host). Click SAVE & ADD OPERATION.

 12 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

6. Services are bundles of operations, each connecting to a full-qualified endpoint relative to
the BASE URL of the service. You will need to add an operation to your service definition
above to make the service usable. Name your new Operation getAsset. Set the Operation
Security Level to Anonymous App Users, as it does not require a specific Identity to
authenticate against before connecting to this operation. Ensure your Target HTTP Method
is set to GET. Using $ parameters to compose the Target URL means those parameter values
will come from your Request Input parameter list (path params). To replace a param
$SomeName, you will need to pass a Request Input SomeName from the application
invoking this Service/Operation.

Note that the Request Input parameter name must match those in the Target URL
field.

Set the Target URL to match the GET DAM REST API call using these path parameters for
collection_id, asset_id and rendition_id:
/$damCollectionID/items/$damAssetID/renditions/$damRenditionID

 13 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

7. Then add the path and query parameters and set their default values. Scroll down and under

Request Input, click Add Parameter to add each parameter: damCollectionID with the
Default Value to your DX DAM Collection ID, such as ccfd0442-36ba-44e5-9c27-
05299727635b or DX_Promotions (Unique name), and damAssetID with the Default Value
to your DX DAM Asset ID, such as ccfd0442- 1bdf5cdd-3f5d-45be-b595-d5126832b597 or
asset file name, such as DX Banner.png and the damRenditionID with the Default Value for
mobile (as you are creating a mobile application this should be Smartphone). Select your
preferred Foundry runtime environment in the bottom to test this service against (ideally
the same runtime environment you’ll eventually be publishing this service to) and click SAVE
AND FETCH RESPONSE to save your Integration service operation and make a test call
immediately.

 14 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

8. The Test panel is appearing now and shows the Test and Log sections. The Test sections
shows the Request Payload, the Backend Response and the Output Result. Backend
Response displays what DX communicated back to Foundry, and Output Result is what
Foundry will relay to the Iris application invoking this service. Since we have not specified
what data-points to pick and choose for our application or enabled the entire output to
pass-through to the application, Output Result only includes opstatus and httpStatusCode
by default. You want also the binaryURL in the output result.

9. You want to add the binaryURL to this result. In this lab, you are focusing on images only, so
you know the format of the asset to display. If you want to manage different asset types,
you may want to add a mime-type here, as this may help you identify what asset you are
finding and how to display it correctly. You will focus on image assets for now, but you may
use the DAM for managing videos and other files too. Scroll down in the Backend Response
to locate the binaryURL of your asset in the REST API response structure. Hover over the
binaryURL node, so it will show binaryURL – Create Response and then click it.

 15 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

10. This switches you to the Response Output and you see the added binaryUrl parameter. Now
test it again, using the Save and retest icon.

11. Now you see the binaryUrl added in the Output Result. The DAM REST API response does
not contain a full URL to the asset, but a relative part that starts after the <host>/dx/api. To
be able to directly point to the image, you need to complete this URL. You want to add a
post process to this result that adds the host to this output. You do this under the advanced
section. Click Advanced to expand.

 16 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

12. You can create any JSON structure in the output response by manually entering
paths/names/data-types, or even generate completely custom response JSON structures
(including fields not present in original backend response, but generated based on custom-
business-logic) using Data Processors (Pre and Post processors). Post processors are used to
modify the backend-response using custom business logic. In this case, the custom logic is
written in JavaScript and injects a new field into the response. Select JavaScript under
Postprocessor and add the two JavaScript lines below, with your own DX host (change
sbx0000 to your instance):

var tmpDXHost = "https://dx.sbx0000.play.hclsofy.com/dx/api/dam/v1";

result.addParam("DXHost", tmpDXHost);

Then select Response Output and click Add Parameter and add DXHost as a parameter.
Click Save And Fetch Response to save your service and to make a test call.

 17 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

13. The Output Result now has DXHost and binaryUrl output parameters. Your Volt Iris project
will use both to compose a valid URL to your DAM asset.

14. You are ready to publish your new Foundry application DXAssetsContentIntegrationSample
for consumption in Volt Iris. Click Publish, select your server and click Publish.

 18 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

15. And then it gets published and finally shows the application status as published.

16. Now you will use the Volt Iris IDE to create a web application that displays the DX image
resource links, using low-code. First, you will create a linkage to the Foundry service you just
created: DXAssetsService. Ensure you have set up Volt Iris IDE and have the right
credentials. See the prerequisites for instructions on how to set this up. Then launch Volt Iris
IDE in your workstation and log in using your Volt MX credentials.

 19 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

17. Ensure you have selected the right cloud account.

18. Create a new project. In the menu, open Project and click New Project.

19. Select Native App and click Next.

20. Name your Iris project, for example myDXSamples and click Create.

 20 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

21. Link your new Iris application to your Foundry application first. Under DATA & SERVICES, to
the right of your Volt Foundry Backend application, open the menu and select Link to
Existing App.

22. This shows all the published Foundry applications. Click ASSOCIATE for your
DXAssetsContentIntegrationSample application.

23. Then refresh the DATA & SERVICES first. Click Refresh.

24. Then go to the design view. Click Design.

25. Expand Mobile and Forms and you will see a default first form, named Form1. Click it and
the rename it to a better name, e.g. DXAssets, using the down-control to the right of Form1
using Rename.

 21 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

26. Under DATA & SERVICES, expand the PROJECT SERVICES and then expand your
DXAssetService service and then drag the getAsset operation to your newly created form
DXAssets, as shown.

27. Select Entry form for Request when asked, then click OK.

 22 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

28. You should see DXAssets updated, generated via Iris low-code capability, with a UI to input
the DAM Collection ID, DAM Asset ID and Rendition ID, along with a button GetAsset at the
bottom. You may change the labels and button texts by selecting the items and modifying
the properties. You could also hide the DamRenditionID and generate this automatically for
the device using the asset. To keep this lab simple, leave it as it is.

29. Now you want to add a new view to render your asset. Add a new form to your Iris mobile
channel. Open the menu to the right of Forms and click New Form.

 23 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

30. Then rename your new form to DXAssetDetails.

31. You are focusing on image assets for now. To render the asset, you will add an image widget
to your new form. From the Default Library, Default widgets, drag the Image widget to your
new form.

 24 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

32. Your image widget now shows under your new form. Now add a button that allows you to
go back to the previous DXAssets form. Drag the Button widget to the top of your new form.

33. You now see your new button. Similar as with your forms, rename these widgets to a more
easily understandable name, like imgDXAsset for your image and btnBackNavigation for
your button.

 25 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

34. Set the properties of your button to appear at the top of the screen and occupying the entire
width of the viewport. To do this, select the button from the project explorer or click on the
button in the canvas, then select PROPERTIES. Now change, under Look and Appearance,
the button Text to Close, and under Flex, the Left and Top margins to 0 Dp (Density
independent pixels), the Width to 100 % and set your Height to 6 %. It would look like this.

35. Now change the image. Select it and then under Look, change the Flex settings to pin the
Widget to the Center and Middle, set Left to 0 Dp, Top to 8 %, Width to 100 % and Height
to 90 %.

36. Then go to the Image settings and ensure the Scale Mode is set to Maintain Aspect Ratio to
ensure the image is rendered in its initial aspect ratio.

 26 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

37. You want your users to use the Close button to go back to the DXAsset form. Therefore, you
will use an Iris generated low-code action script for the onClick event of your
btnBackNavigation button. Ensure the focus in on the btnBackNavigation button. Select
PROPERTIES - Action and click Edit button next to the onClick event.

38. The Action Editor shows and from the action palette, drag the General - Navigate to Form
action to the flow-line between Start and End in the action tree.

 27 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

39. Then select the DXAssets form it should navigate to and click Save.

40. To display a DX image, you will need the fully qualified DX asset URL. You will use a global
variable to hold the DX URL. Add this using the menu Edit – Global Variables.

41. Keep it as a Simple Type, name it gblDXAssetURL to hold the DX asset URL and close the
dialog box.

 28 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

42. You will set this variable when your user clicks the GetAsset button on your DXAssets form
and then open your DXAssetsDetails form. Select your DXAssets form and GetAsset button
(it may have a different default ID), then PROPERTIES, Action and click Edit for the onClick
event.

43. In the Action Editor you will see the auto-generated action flow for the click event of the
button. You will notice that this covers the failure scenario for the service call Show Alert
“Info” stating that the service has failed. You will need to create the action flow for the
success condition. Here, if the service succeeds, you will initialize the global variable you just
created and then navigate to the next form DXAssetDetails. Drag the Add Snippet action
under FUNCTION to the If node attached to the service Callback in the script tree. The If
node currently only has the No and Else branch. Drop the Snippet next to the If node when
you see the “blue” guiding arrow.

 29 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

44. Then add the JavaScript line below that generates the global variable to the fully qualified
URL.

gblDXAssetURL = getAsset.DXHost+getAsset.binaryUrl;

45. Then add the navigation to the DXAssetDetails form. Add the GENERAL – Navigate to Form
between the Add Snippet and End using drag & drop, select the DXAssetDetails form and
click Save.

 30 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

46. Then you need to use this URL in the global variable in your DXAssetDetails form. Select your
DXAssetDetails form. Then under PROPERTIES – Action click the Edit button for the
preShow event.

47. Then add the Add Snippet between Start and End and add the code that sets the source of
your imgDXAsset image widget to your global URL gblDXAssetURL. You do that with the
following JavaScript. Then click Save.

this.view.imgDXAsset.src = gblDXAssetURL;

 31 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

48. You are now ready to build and test your mobile channel application. Click Build -> Live
Preview Settings.

49. Then check any ADAPTIVE WEB option that matches your favorite mobile device, for
example iOS. Then ensure you have the same environment selected as the one where you
published your Foundry application. Select Clean Preview to clear build caches and click
Save & Run.

 32 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

50. You should see your application running as an iPhone SPA. Provide a valid DAM Collection ID
(e.g. DX_Promotions), DAM Asset ID (e.g. DX Banner.png) and DAM Rendition ID (e.g.
Smartphone) from your DX Digital Assets to the input text boxes. Click the button GetAsset.

51. You should see your DAM asset. Your business user can easily update these assets with a
user-friendly interface. Feel free to close and try with a different collection, asset ID and
rendition.

Congratulations! You have successfully developed, built, and ran your Volt MX mobile application
using the Volt MX low-code capability that renders a DX asset, managed by business users.

 33 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Part 2: Use DX Content in a new HCL Volt MX Web Application

In this part, you will learn how to develop, build, and run a new Volt MX web application that uses
your HCL Digital Experience content. To facilitate communication between the DX backend content
and Foundry, you will create integration services in Foundry that will search DX content, based on a
Content Template ID and Parent ID (Site Area) as input to the service, and a service to get details on
a single content. You will also learn to use the HCL Digital Experience Content Adaptor that is
available on the Volt MX Marketplace. Then you will build your web application with Iris that uses
these services. It allows you to select a ContentTemplateID and ParentID and show the titles and IDs
of the content that correspond.
And when selecting a product, you will see the details.

1. First select Apps in Foundry and click your DXAssetsContentIntegrationSample Foundry app
you built in Part 1.

2. Then create a new integration service. Select Integration, CONFIGURE NEW.

 34 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

3. Then name it DXContentService and select JSON Service Type. Now configure this
integration service with your DX SoFy instance. In the DX Integration Introduction, you have
seen the structure of the REST API calls to get DX content. Assign the Base URL to the web
content REST API URL for your DX SoFy instance:
<host>/dx/api/core/v1/<access_type>/webcontent, for example,
https://dx.sbx0000.play.hclsofy.com/dx/api/core/v1/dxrest/webcontent (replace 0000 by
the one of your instance). You have anonymous access to your content with the REST API, so
you can use Web Service Authentication - None. If you would use protected content, you
need use dxmyrest and Basic Web Service Authentication using the User ID and Password of
a user that has access to your content provided in your SoFy instance. Then click SAVE &
ADD OPERATION.

 35 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

4. You first want to add an operation that gives you the list of product contents based on a
specific Content Template and in a specific Site Area (using its parent ID) in DX. Give your
new operation a name that reflects this, e.g.
searchWebContentByContentTemplateAndParentID. Set the Operation Security Level to
Anonymous App Users and set the target URL to the search API:
/search?type=Content&authoringTemplateID=$contentTemplateID&parentID=$parentID

5. As done in the previous part for Assets, we should define the two parameters of the REST
API URL, and we should provide some default value to them. In your DX instance, look up the
UUID of the Site Area (parent ID), e.g. for Woodburn Studio Content – Products for all the
product content items: 0407455c-68ed-455b-84c6-f916cedff649. Hover over it to have the
pop up show.

6. Also look up the UUID of a Content Template, e.g. for Woodburn Studio Design - AT-Product-
Item: 36a33863-6ea3-4d44-8430-aa5287682aa2.

 36 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

7. And set these as the Default Value for a new request parameters contentTemplateID and
parentID using Add Parameter. Then click SAVE AND FETCH RESPONSE.

8. Check the Output Result and Backend Response. If you have a 401, you may not have
correctly set up the security of the virtual resource WCM REST SERVICE, under the Resource
Permissions where you should have edit access to. You may refer to HDX-DEV-100
Experience API lab to configure this properly. Then you want to add the title and id of each
product to your output result. Have a look at the Backend Response and you will see that
the title is addressed with contents[*].title.value and the id with contents[*].id.

 37 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

9. In this case, you will manage these parameters under the Response Output directly. Click
Response Output.

10. First add the content parameter and set it to $.contents[*] and change this to Collection.
This will make it become a list in the output.

11. And then add a title parameter, name it title, set the PATH to title.value and set the
COLLECTION ID to the collection you just created: content.

 38 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

12. And add the id parameter, name it id, set the PATH to id and again select content as the
COLLECTION ID. Then click SAVE AND FETCH RESPONSE.

13. Your Output Result contains the list of content title and id. Now add an operation to get an
individual content. Click Operations List.

14. Click ADD OPERATION.

 39 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

15. Name it getProductItem as it is dedicated to your Content Template, set the Operation
Security Level to Anonymous App Users and set the Target URL to /contents/$contentID.

16. Then find the UUID for your default content, e.g. Product 01 under Woodburn Studio
Content – Products: 4282f9fd-799d-48fb-a49b-65c9598016cd. Hover over Product 01 to get
the pop up to copy the UUID.

17. Then add the request parameter contentID using Add Parameter and set the Default Value
to the UUID of your content item, in this case 4282f9fd-799d-48fb-a49b-65c9598016cd.
Click SAVE AND FETCH RESPONSE.

 40 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

18. Now have a look at the JSON payload. Open the source view.

19. Then you may want to expand it or copy it to paste and see it in your preferred JSON
beautifier/viewer, like https://codebeautify.org/jsonviewer.

20. To enable your operation to return all the Product Title, Designer Name, Description and
images belonging to this Woodburn Studio product content, you need to understand the
JSON format. For example, you see that the Product-Image-01 element is the element
number 5 and has the name and data nodes.

 41 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

21. To understand the structure of this JSON, use the right panel of
https://opensource.hcltechsw.com/experience-api-documentation/ring-
api/#operation/webContentReadContent, where you can expand the path to see that the
elements are under a content – content - elements node and each element has a name,
title, displayTitle, type and data node. Depending on the element type, the data will look
different. Here you see the sample structure of an image with its renditions expanded, using
renditionList.

 42 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

22. You may use a JSON Path Tester, like https://codebeautify.org/jsonpath-tester, to find the
paths for each of your elements. You may do a lookup for each element using its name in the
following path $.content.content.elements.element[?(@.name=='<element name>')], e.g.
for Product-Name this would be $.content.content.elements.element[?(@.name=='Product-
Name')]. In this way, you may find the paths to product title, designer name, description,
and images.

 43 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

23. The images are a bit special, as they have a source image, accessible with
$.content.content.elements.element[?(@.name=='<Image Element
Name>')].data.PropertiesContent.image.resourceUri.value and different renditions that
may be retrieved easily as well using $.content.content.elements.element[?(<Image
Element Name>)].
data.PropertiesContent.image.renditionList[?(@.name=='<rendition>')].resourceUri.value.
See the table with element names and corresponding paths.

Element Name Path
Product-Name $.content.content.elements.element[?(@.name=='Product-Name')].data.PropertiesContent.value
Designer-Name $.content.content.elements.element[?(@.name=='Designer-

Name')].data.PropertiesContent.value
Description $.content.content.elements.element[?(@.name=='Description')].data.PropertiesContent.value
Product-Image-01 Source: $.content.content.elements.element[?(@.name=='Product-Image-

01')].data.PropertiesContent.image.resourceUri.value
Desktop : $.content.content.elements.element[?(@.name=='Product-Image-
01')].data.PropertiesContent.image.renditionList[?(@.name=='desktop')].resourceUri.value
Tablet : $.content.content.elements.element[?(@.name=='Product-Image-
01')].data.PropertiesContent.image.renditionList[?(@.name=='tablet')].resourceUri.value
Smartphone : $.content.content.elements.element[?(@.name=='Product-Image-
01')].data.PropertiesContent.image.renditionList[?(@.name=='smartphone')].resourceUri.value

Product-Image-02 Source: $.content.content.elements.element[?(@.name=='Product-Image-
02')].data.PropertiesContent.image.resourceUri.value
Desktop : $.content.content.elements.element[?(@.name=='Product-Image-
02')].data.PropertiesContent.image.renditionList[?(@.name=='desktop')].resourceUri.value
Tablet : $.content.content.elements.element[?(@.name=='Product-Image-
02')].data.PropertiesContent.image.renditionList[?(@.name=='tablet')].resourceUri.value
Smartphone : $.content.content.elements.element[?(@.name=='Product-Image-
02')].data.PropertiesContent.image.renditionList[?(@.name=='smartphone')].resourceUri.value

Product-Image-03 Source: $.content.content.elements.element[?(@.name=='Product-Image-
03')].data.PropertiesContent.image.resourceUri.value
Desktop : $.content.content.elements.element[?(@.name=='Product-Image-
03')].data.PropertiesContent.image.renditionList[?(@.name=='desktop')].resourceUri.value
Tablet : $.content.content.elements.element[?(@.name=='Product-Image-
03')].data.PropertiesContent.image.renditionList[?(@.name=='tablet')].resourceUri.value
Smartphone : $.content.content.elements.element[?(@.name=='Product-Image-
03')].data.PropertiesContent.image.renditionList[?(@.name=='smartphone')].resourceUri.value

 44 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

24. Go to your Response Output and start creating the productName, designerName and
description parameters by using the path defined above for the images, you may manage
them into a collection of elements (images). Create a collection of elements (images) that
has a data.ProperiesContent.image defined, using
$.content.content.elements.element[?(!!@.data.PropertiesContent.image)]. And then, for
each image, add the name with name, entries of the sourceUri values for source using
data.PropertiesContent.image.resourceUri.value, and the desktop, tablet and smartphone
renditions (if they exist, which is not the case by default for the Woodburn Studio Products)
for each image, using
data.PropertiesContent.image.renditionList[?(@.name=='<rendition>')].resourceUri.value.
The next time you test the operation you will see the list of image and other elements with
values in the Output Response. To re-test, click the green play icon located left Test Log
panel.

 45 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

25. Then, like with the DXAssets, you need to add the host to allow you create a full URL to your
images. Click Advanced, select JavaScript and paste this code, updated with your own host
URL. Click SAVE AND FETCH RESPONSE and check it works.

var tmpDXHost = "https://dx.sbx0000.play.hclsofy.com";

result.addParam("DXHost", tmpDXHost);

26. Then republish your Foundry application DXAssetsContentIntegrationSample. Click the
Publish tab, select your runtime and click the Publish button.

27. You may also use the HCL Digital Experiene Content Adaptor. This includes all endpoints of
the WCM REST V2 APIs. You can download this from the Volt MX Marketplace
https://marketplace.hclvoltmx.com/items/hcl-dx-content-adapter. Details on how to
download, import and start using are described here
https://opensource.hcltechsw.com/digital-
experience/latest/extend_dx/integration/mx/example/dx_apis_in_foundry/.

 46 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

28. Now switch to your Volt Iris IDE to create your web application. In your Iris project
myDXSamples, you need to unhide the Responsive Web /Desktop first, as this help you
creating the right resources more easily for your web application. For that, right click on your
myDXSamples application and then Filter.

29. Then check Responsive Web/Desktop and click Save.

30. Then expand the Responsive Web / Desktop, right click on Forms and click New Form to
create a form that allows you to search the right content first.

 47 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

31. Then rename it, e.g. to DXContentSearch.

32. This application is already associated with the Foundry services you have created before. As
you have updated the Foundry services, you need to refresh the Foundry association. Under
DATA & SERVICES, click Refresh and expand PROJECT SERVICES to see your
DXContentService.

33. Expand DXContentService to see your operations and drag & drop
searchWebContentByContentTemplateAndParentID operation into the form.

34. Select Entry form for Request when asked and OK, as this allows you to select the Content
Template and Parent ID of the content you want to show.

 48 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

35. This adds a flex container with your input parameters and a button. Then update this button.
Click your button, then PROPERTIES, and update under Look – Appearance the text, e.g. to
Search Web Content and the width, e.g. to 300 Dp. Feel free to make other changes as well.

36. Then you want to show the results on the same form. Select the form, click DATA &
SERVICES and drag your searchWebContentTemplateAndParentID operation to any place in
the form, except for your existing flex container.

37. Now select a Grid Using Response and click OK.

 49 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

38. Configure this flex container to show correctly on the right of the form. Click PROPERTIES
and update the Flex parameters, Pin to right for the Widget setting, Left to Default, Right to
0%, Top to 10%, Width to 45% and Height to 90%.

39. Then hide this flex container, until you have done a search. Ensure you have selected the
container and then under PROPERTIES, switch Visible to Off and notice it disappears.

40. Then change the button to show the flex container when you start the search. Select the
button and then under PROPERTIES – Action, click Edit for the onClick event.

 50 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

41. Scroll down to see the Add Mapping node and then drag the Set Widget Property node
under Widget category to the blue connector between Add Mapping and End nodes.

42. Then, select flexHeadersearchWebContentByContentTemplateAndParentID flex container
and ensure the Property is set to Visible and Visibility to True. Click Save.

43. Then add a form for the details of each product. Right click Forms and New Form.

 51 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

44. And rename it to DXProductDetails.

45. Then create a global variable to pass the Content UUID and have easy access to its details in
the DXProductDetails form and one to access the DXHost. Click Edit and then Global
Variables.

46. Then add two the variables gblDXContentID and gblDXHost, and close it.

 52 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

47. Then set this variable when you click a row in your search list of content result. Under the
search result form, select the segment
segsearchWebContentByContentTemplateAndParentID, click PROPERTIES and Edit for the
onRowClick action.

48. Use a snippet to set the new global variable to the content ID in the row. Drag the
FUNCTION – Add Snippet between Start and End and add the follow code:

gblDXContentID=self.view.segsearchWebContentByContentTemplateAndParentID.data[ro
wNumber].lblid1.text;

 53 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

49. Then add a navigation to your new form. Add a GENERAL – Navigate to From widget
between your Add Snippet and End and set it to your new DXProductDetails form. Then
click Save.

50. Now create the mapping for the form. Select your new form DXProductDetails and click Edit
under PROPERTIES – Action – onMapping.

 54 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

51. Drag the NETWORK – Invoke Service between Start and End and set it to
DXContentService$getProductItem operation to get the details of your content. Then click
Open Mapping Editor.

52. Then select your Variable - gblDXContentID and link it to the Services – Service –
DXContentServices$getProductItem – contentID. Click Save.

 55 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

53. Then build your form using the widgets from the palette. To render a collection, you created
to manage your image, you may use a segment. You may create something like using Labels,
a TextArea, a Segment, an Image and a Button. You will use the labels to display the text
elements, a text area for the description (as this may be multiple lines), a segment for the list
of images (source for now, but you may also add renditions later), an image to render the
selected image and a button to navigate back to the search page. Drag them to your form
from the Widgets Palette.

 56 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

54. Then update the IDs from the autogenerated ones to make them more context specific as
well as the text value of the labels, when they have a constant value. Use the prefixes “lbl”
for labels, “txt” for the text area, “seg” for the segment and “btn” for your button. For the
values, clear the text. It should look like this:

55. Then define a template for the segment for the images that may render the title of the
image and set the right URL. Do this for the desktop now. Click Templates, open Desktop,
right click Segments and click New Template.

56. Rename the Template to something more easily readable, like tmpImageSegment. This
template will store the image name (visible) and the image URL (hidden). Then, add a label
for each of them, lblImageName and lblSourceURLHidden. Clear the text of lblmageName
and hide lblSourceURLHidden, by clicking Visible Off. When this is set, your template looks
empty again. In this case, you will only show the source image. You are making the change
now for the desktop. You may repeat these steps for the Tablet and Smartphone renditions
as well.

 57 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

57. Then update your form with this new template. Select your DXProductDetails form and then
your segImages segment and under Segment select your new tmpImageSegment Row
Template.

58. Now update your form mapping. Click DXProductDetails form, PROPERTIES – Action and the
onMapping Edit.

59. Then add a MAPPING – Add Mapping node on top of the Callback. It will show below. And
then map the first text fields under Forms – DXProductDetails - productName,
designerName and description under Services – Service –
DXContentService$getProductItem to the corresponding text of the value labels under
Forms – DXProductDetails.

 58 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

60. Map the images collection to the Segment – masterdatamap – rowData collection first and
then map the images name and source to the corresponding text of the labels.

61. Then add an Add Snippet widget to set the global variable DXHost. Drag it to Add Mapping
and enter:

gblDXHost=getProductItem.DXHost;

Then click Save.

 59 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

62. Then update the segment to render the image in the form, once one of the images are
clicked. Select your images segment, click PROPERTIES – Action and then Edit on the
onRowClick event.

63. Then set the image URL to the one selected in your segment. Add a FUNCTION – Add
Snippet, set the value using the code below and click Save.

self.view.imgImage.src=gblDXHost+self.view.segImages.data[rowNumber].lblSourceURLHid
den.text;

64. Finally, update your button to clear the image and go back to the search form. Select your
button and click onClick Edit.

65. First clear the image URL. Drag a FUNCTION – Add Snippet and enter:

self.view.imgImage.src="";

 60 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

66. Then add the navigation. Drag a GENERAL – Navigate to Form node, set it to
DXContentSearch and click Save.

67. Now test it. In the menu click Build – Live Preview Settings.

 61 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

68. Ensure the Responsive Web is the only channel selected and select the Clean Preview
checkbox. Ensure the Foundry runtime matches the Foundry runtime environment, which
you published Foundry application. Then click Save & Run.

69. Enter your Content Template ID 36a33863-6ea3-4d44-8430-aa5287682aa2 and Parent ID
0407455c-68ed-455b-84c6-f916cedff649 and click Search Web Content.

 62 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

70. It shows the list of content items of that Content Template and ParentID (Site Area). Click
one of the products to show, e.g. Product 01.

71. It shows the details on that content item. Then select one of the images, e.g. Product-Image-
01 and it should show the image to the right.

72. Feel free to make the UI look better, add the other image renditions, add a loading icon
when you load the image, etc.

You have successfully learned how to integrate the DX content into your HCL Volt MX application.

 63 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Part 3: Use Volt MX Foundry to Integrate External Data Sources in DX

In this part, you will learn how use Digital Data Connector to integrate data sources from HCL Volt
MX Foundry (integrated external data sources) into HCL Digital Experience.

To learn how more on the Digital Data Connector, use the DX for Developers (Beginners) course
https://hclsw.co/hdx-dev-100 with the Digital Data Connector lesson:
https://hclsoftwareu.hcltechsw.com/courses/lesson/?id=1451.

You may use Volt MX Foundry for API management, as documented in
https://opensource.hcltechsw.com/volt-mx-
docs/docs/documentation/Foundry/voltmx_foundry_user_guide/Content/API_Management.html.
Foundry helps to integrate easily with many different data sources using endpoint adapters. See
details on https://opensource.hcltechsw.com/volt-mx-
docs/docs/documentation/Foundry/voltmx_foundry_user_guide/Content/Services.html.

Then, the Help Center has the following document Connecting to HCL Volt MX Foundry through
Digital Data Connector (DDC) : https://opensource.hcltechsw.com/digital-
experience/latest/extend_dx/ddc/integrating_voltmx_foundry/. Follow these steps and you will get
this result.

 64 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Part 4: Integrate Volt MX Foundry Web Applications in DX

In this part, you learn how to integrate Foundry web applications into HCL Digital Experience.

Today, an easy way to integrate an existing Foundry web application, is using an iFrame. This may
change in the future. This works only for Foundry web applications that are suitable to be displayed
in an iFrame.

This has been used for the integration you have seen in the DX integration with HCL Volt MX for
Business Users.

1. Go to the Web Content Authoring and add the Volt MX web content library. Open the
Applications Menu;, click Web Content – Authoring and Edit Shared Settings.

2. Then add the Volt MX web content library to the right and click OK.

 65 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

3. You may want to set this to work with your own Volt MX server. In this case, edit the Volt
MX (web content library) – Content – Global Config (site area) – Global Config content and
update the VoltMX Server URL with your own server.

4. Then have a look at the page components that are exposed in the toolbar for your business
users, to allow them to easily add any Volt MX application into a DX page. There is a folder
for Volt MX Applications, that may look like this.

 66 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

5. You may look at how this New Volt MX Application that is preconfigured to show a default
application (here GetAQuote) and optional form with a dedicated width and height. You may
also update this to your needs. Feel free to reach out to our HCL DX services team to get
production support on this implementation.

6. And have a look at the use Content and Presentation Template for these content items. Feel
free to copy and change them. You may involve HCL services to make them production
ready.

You have successfully learned how to integrate HCL Volt MX Foundry web applications into DX.

 67 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Part 5: Use Volt MX Iris to turn a DX Site into a Native Mobile
Application

In this part, you learn how you may use Volt MX Iris to build a native mobile application from any DX
site and deploy this to any store, like Apple AppStore and Google Play.

1. Create a new application in Iris. Create a new project. In the menu, open Project and click
New Project.

2. Select Native App and click Next.

3. Then select the Mobile devices size, as it will directly create you the form for Mobile. Click
Next.

 68 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

4. Name your Iris project, for example WoodburnStores and click Create.

5. Then switch to the design mode. Click DESIGN.

6. Then rename the form that was created, e.g. to the name of your site, like Woodburn Stores.

 69 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

7. Add a browser widget. Drag and drop the Browser widget to your form.

8. Ensure it takes all space of the form. Click PROPERTIES, under Flex make Left 0 Dp, Right 0
Dp, Width 100% and Height 100%.

 70 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

9. Set it to the URL of your site. Under PROPERTIES, switch to Browser and click Edit of Master
Data. Then switch the Type to URL and enter the URL of your site, e.g. the one of Woodburn
Stores (update the URL to your instance) :
https://dx.sbx0000.play.hclsofy.com/wps/myportal/woodburnstores.

10. Then build your new native application and test it locally. You need to have set up a local
emulator. This could be with Xcode https://developer.apple.com/xcode/ if you have a Mac
or Android Studio https://developer.android.com/studio. For example, on Xcode, start the
Simulator. In the Xcode menu, under Open Developer Tool, click Simulator.

 71 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

11. Then run Build – Build Native Local.

12. Select the mobile emulator, e.g. iPhone 14 Pro Max (16.2). Select Clean Build and click Build.

 72 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

13. It then builds your native application and shows it in your mobile emulator. Click OK.

Congratulations. You have successfully turned your DX site into a native mobile application and may
get it published on the different stores.

 73 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Conclusion

Using this lab tutorial, you have learned how easy it is to use HCL Digital Experience assets like
images, videos and files and structured content in your HCL Volt MX applications, and how to use
Volt MX to easily integrate its data into DX, using Digital Data Connector and to integrate Foundry
web applications into DX sites. And you learned how you may HCL Volt MX Iris to turn your existing
DX sites into native mobile applications.

 74 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Resources

Refer to the following resources to learn more:

HCL Digital Experience Home - https://hclsw.co/dx

HCL Volt MX Home - https://www.hcltechsw.com/volt-mx

HCL Digital Experience on HCL SoFy - https://hclsofy.com/

HCL Software - https://hclsw.co/software

HCL Product Support - https://hclsw.co/product-support

HCL DX Product Documentation - https://hclsw.co/dx-product-documentation

HCL Volt MX Product Documentation - https://opensource.hcltechsw.com/volt-mx-
docs/docs/documentation/index.html

HCL DX Support Q&A Forum - https://hclsw.co/dx-support-forum

HCL DX Video Playlist on YouTube - https://hclsw.co/dx-video-playlist

HCL DX Product Ideas - https://hclsw.co/dx-ideas

HCL DX Product Demos - https://hclsw.co/dx-product-demo

HCL DX Did You Know? Videos - https://hclsw.co/dx-dyk-videos

HCL DX GitHub - https://hclsw.co/dx-github

 75 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Legal statements

This edition applies to version 9.5, release 216 of HCL Digital Experience and HCL Volt MX V9 and
to all subsequent releases and modifications until otherwise indicated in new editions.

When you send information to HCL Technologies Ltd., you grant HCL Technologies Ltd. a
nonexclusive right to use or distribute the information in any way it believes appropriate without
incurring any obligation to you.

©2024 Copyright HCL Technologies Ltd and others. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with HCL Technologies
Ltd.

 76 ©2024 HCLSoftware

DX INTEGRATION WITH HCL VOLT MX FOR DEVELOPERS

Disclaimers

This report is subject to the HCL Terms of Use (https://www.hcl.com/terms-of-use) and the
following disclaimers:

The information contained in this report is provided for informational purposes only. While efforts
were made to verify the completeness and accuracy of the information contained in this publication,
it is provided AS IS without warranty of any kind, express or implied, including but not limited to the
implied warranties of merchantability, non-infringement, and fitness for a particular purpose. In
addition, this information is based on HCL’s current product plans and strategy, which are subject to
change by HCL without notice. HCL shall not be responsible for any direct, indirect, incidental,
consequential, special or other damages arising out of the use of, or otherwise related to, this report
or any other materials. Nothing contained in this publication is intended to, nor shall have the effect
of, creating any warranties or representations from HCL or its suppliers or licensors, or altering the
terms and conditions of the applicable license agreement governing the use of HCL software.

References in this report to HCL products, programs, or services do not imply that they will be
available in all countries in which HCL operates. Product release dates and/or capabilities referenced
in this presentation may change at any time at HCL’s sole discretion based on market opportunities
or other factors, and are not intended to be a commitment to future product or feature availability
in any way. The underlying database used to support these reports is refreshed on a weekly basis.
Discrepancies found between reports generated using this web tool and other HCL documentation
sources may or may not be attributed to different publish and refresh cycles for this tool and other
sources. Nothing contained in this report is intended to, nor shall have the effect of, stating.

or implying that any activities undertaken by you will result in any specific sales, revenue growth,
savings or other results. You assume sole responsibility for any results you obtain or decisions you
make as a result of this report. Notwithstanding the HCL Terms of Use (https://www.hcl.com/terms-
of-use), users of this site are permitted to copy and save the reports generated from this tool for
such users own internal business purpose. No other use shall be permitted.

